This is the second portion of the Database Design and Programming with SQL course. In this portion, students implement their database design by creating a physical database using SQL, the industry-standard database programming language. Upon completion of this course, students have the opportunity to sit for the first of two exams required to earn the Oracle Certified Associate. The course outline below includes section titles and descriptions, lesson titles, and detailed objectives for each lesson.

Section 1
SQL has many functions used to manipulate data. This section continues the discussion of functions and focuses on those that are the most common. Functions are a very powerful feature of SQL and can be used to do the following: perform calculations on data, modify individual data items, manipulate output for groups of rows, format dates and numbers for display, and convert column data types. This section also introduces substitution variables, and how these are used in Oracle Application Express. Finally, the section offers students the opportunity to examine the IT job market and identify careers that they may be interested in pursuing.

Lesson 1: Case and Character Manipulation
- Select and apply single-row functions that perform case conversion and/or character manipulation.
- Select and apply character case-manipulation functions LOWER, UPPER, and INITCAP in a SQL query.
- Select and apply character-manipulation functions CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, TRIM, and REPLACE in a SQL query.
- Write flexible queries using substitution variables.

Lesson 2: Number Functions
- Select and apply the single-row number functions ROUND, TRUNC, and MOD in a SQL query.
- Distinguish between the results obtained when TRUNC is applied to a numeric value and ROUND is applied to a numeric value.
- State the implications for business when applying TRUNC and ROUND to numeric values.

Lesson 3: Date Functions
- Select and apply the single-row functions MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY, LAST_DAY, ROUND, and TRUNC that operate on date data.
- Explain how date functions transform Oracle dates into date data or a numeric value.
- Demonstrate proper use of the arithmetic operators with dates.
- Demonstrate the use of SYSDATE and date functions.
- State the implications for world businesses to be able to easily manipulate data stored in date format.

Lesson 4: Interest and Aptitudes and Career Exploration
- Analyze and understand IT career options and education requirements based on interests, abilities, aptitudes, and accomplishments.
- Demonstrate skills for locating, evaluating, and interpreting IT career information.
- Apply concepts learned as a result of student's own work and academic experiences and evaluate the application of skills to career options and the world of work.
Section 2
The single-row functions described in this section focus on several important topics including creating queries that require the use of numeric, character, and date functions; using a set of general functions that work with any data type and pertain to using null value; converting column data types; and applying the CASE and DECODE methods to implement conditional logic.

Lesson 1: Conversion Functions
- Provide an example of an explicit data-type conversion and an implicit data-type conversion.
- Explain why it is important, from a business perspective, for a language to have built-in data-conversion capabilities.
- Construct a SQL query that correctly applies TO_CHAR, TO_NUMBER, and TO_DATE single-row functions to produce a desired result.
- Apply the appropriate date and/or character format model to produce a desired output.
- Explain and apply the use of YYYY and RRRR to return the correct year as stored in the database.

Lesson 2: NULL Functions
- Demonstrate and explain the evaluation of a nested function.
- List at least four general functions that work with any data type and relate to handling null values.
- Explain the use of the COALESCE and the NVL functions.
- Explain the use of general functions to deal with null values in data.
- Construct and execute a SQL query that correctly applies NVL, NVL2, NULLIF, and COALESCE single-row functions.

Lesson 3: Conditional Expressions
- Compare and contrast the DECODE and CASE functions.
- Construct and execute a SQL query that correctly uses the DECODE and CASE functions.
- Construct and execute two methods for implementing IF-THEN-ELSE conditional logic.

Section 3
The SQL statements taught to this point in the course are limited to querying and returning information from one table at a time. Separating data into individual tables and being able to associate the tables with one another is the heart of relational database design. This section introduces the database join, the syntax that allows separate tables to be combined in one query

Lesson 1: Destinations: What’s in My Future?
- Document a plan where training/education can be obtained to pursue career choices.
- Formulate a 10-year vision of educational, career, leisure, and family goals.

Lesson 2: Cartesian Product and the Join Operations
- Describe the purpose of join conditions.
- Construct and execute a SELECT statement that results in a Cartesian product.
- Construct and execute SELECT statements to access data from more than one table using an equijoin.
- Construct and execute SELECT statements that add search conditions using the AND operator.
- Apply the rule for using column aliases in a join statement.
- Provide evidence to answer the question "Why is it important, from a business perspective, for a language to be able to combine information from multiple data sources?"
Lesson 3: Nonequijoins
 - Construct and execute a SELECT statement to access data from more than one table using a nonequijoin.

Lesson 4: Outer Joins
 - Create and execute a SELECT statement to access data from more than one table using an outer join.

Lesson 5: Self Joins and Hierarchical Queries
 - Construct and execute a SELECT statement to join a table to itself using a self-join.
 - Interpret the concept of a hierarchical query.
 - Create a tree-structured report.
 - Format hierarchical data.
 - Exclude branches from a tree structure.

Section 4
There are two ways in which to make connections between tables in a database. One way is to use syntax or commands that are referred to as Oracle proprietary joins. The other way is to use ANSI/ISO SQL 99 compliant standard joins. In this section, students learn the differences between the join techniques, as well as the reasons why it is important to have standards such as ANSI/ISO.

Lesson 1: Putting It All Together
 - Identify factors that contribute to the changing nature of work.

Lesson 2: Cross Joins and Natural Joins
 - Compose and execute a natural join using ANSI-99 SQL join syntax.
 - Create a cross join using ANSI-99 SQL join syntax.
 - Define the relationship between a cross join and a Cartesian product.
 - Define the relationship between a natural join and an equijoin.
 - Explain why it is important to have a standard for SQL as defined by ANSI.

Lesson 3: Join Clauses
 - Compose and execute a join with the ANSI-99 USING and ON clauses.
 - Compose and execute an ANSI-99 query that joins three tables.
 - Name the Oracle proprietary joins and their ANSI/ISO SQL: 1999 counterparts.

Lesson 4: Inner Versus Outer Joins
 - Compare and contrast an inner and an outer join.
 - Construct and execute a query to use a left outer join.
 - Construct and execute a query to use a right outer join.
 - Construct and execute a query to use a full outer join.

Section 5
While single-row functions determine how data is displayed, group functions go one step further by allowing logical operations on sets of rows to give one result per group. Such operations include: finding the average, maximum, minimum, sum, statistical values, counting the number of rows, finding DISTINCT non-duplicate values, and using NVL to force group functions to include NULL values.

Lesson 1: Review of Joins
 - Determine the correct join syntax to use given a scenario requiring the join of data from two or more tables.
Lesson 2: Group Functions
- Define and give an example of the seven group functions: SUM, AVG, COUNT, MIN, MAX, STDDEV, VARIANCE.
- Construct and execute a SQL query using group functions.
- Construct and execute group functions that operate only with numeric data types.

Lesson 3: COUNT, DISTINCT, NVL
- Construct and execute a SQL query using the COUNT group function.
- Use DISTINCT and the NVL function with group functions.

Section 6
Section 6 focuses on more complex SQL statements. The GROUP BY and HAVING clauses enable users to apply functions to and restrict data returned from aggregate data. GROUP BY ROLLUP and GROUP BY CUBE and GROUPING SETS are extensions to the standard GROUP BY clause, which add subtotals and grand totals to queries returning aggregated data. Subqueries are queries written within queries. Students learn that being able to combine two queries into one can be very useful when you need to select rows from a table with a condition that depends on the data in the table itself. This section also covers the more advanced features of the SELECT statement, specifically, single-row subqueries and multiple-row subqueries the ability to utilize a subquery or a "query within a query" is the reason that the word "structured" appears in SQL or Structured Query Language. This section covers the difference between pair-wise and non-pair-wise multi-column subqueries, non-correlated subqueries as well as correlated subqueries. It introduces the WITH-clause, which allows the definition of named subqueries to be used in a complex SELECT statement. Students are introduced to the SET operators, UNION, UNION ALL, MINUS, and INTERSECT.

Lesson 1: GROUP BY and HAVING clauses, ROLLUP and CUBE Operations, and GROUPING SETS
- Construct and execute a SQL query using GROUP BY.
- Construct and execute a SQL query using GROUP BY … HAVING.
- Construct and execute a GROUP BY on more than one column.
- Nest group functions.
- Use ROLLUP to produce subtotal values.
- Use CUBE to produce cross-tabulation values.
- Use GROUPING SETS to produce a single result set.

Lesson 2: Subqueries
- Define and explain the purpose of subqueries for retrieving data.
- Construct and execute a single-row subquery in the WHERE clause.
- Distinguish between single-row and multiple-row subqueries.
- Distinguish between pair-wise and non-pair-wise subqueries.

Lesson 3: Single Row Subqueries
- Construct and execute a single-row subquery in the WHERE clause or HAVING clause.
- Construct and execute a SELECT statement using more than one subquery.
- Construct and execute a SELECT statement using a group function in the subquery.

Lesson 4: Multiple-row Subqueries
- Use the comparison operators IN, ANY, and ALL correctly in multiple-row subqueries.
- Construct and execute a multiple-row subquery in the WHERE clause or HAVING clause.
- Describe what happens if a multiple-row subquery returns a null value.
- Understand when multiple-row subqueries should be used and when it is safe to use a single-row subquery.
Lesson 5: Correlated Subqueries
- Identify when correlated subqueries are needed.
- Construct correlated subqueries.
- Construct named subqueries using the WITH clause.

Lesson 6: Using SET Operators
- Define and explain the purpose of SET operators.
- Use a SET operator to combine multiple queries into a single query.

Section 7
Data Manipulation Language (DML) is a core part of SQL. A DML statement is used to add, update, delete, or merge data in the database. A collection of DML statements forms a logical unit of work called a "transaction."

Lesson 1: Insert Statements
- Give examples of why it is important to be able to alter the data in a database.
- Construct and execute INSERT statements that insert a single row using a VALUES clause.
- Construct and execute INSERT statements that use special values, null values, and date values.
- Construct and execute INSERT statements that copy rows from one table to another using a subquery.

Lesson 2: Updating Column Values and Deleting Rows
- Construct and execute an UPDATE statement.
- Construct and execute a DELETE statement.
- Construct and execute a query that uses a subquery to update and delete data from a table.
- Explain how foreign-key and primary-key integrity constraints affect UPDATE and DELETE statements.

Lesson 3: DEFAULT Values, MERGE, and Multi-Table Inserts
- Understand when to specify a DEFAULT value.
- Construct and execute a MERGE statement.
- Construct and execute DML statements using SUBQUERIES.
- Construct and execute multi-table inserts.

Section 8
The Data Definition Language (DDL), used to create, alter, remove, and drop tables, is covered in this section. DDL statements are used to change the name, remove rows, and add comments to a table. Data types include character data (CHAR AND VARCHAR2), numbers, dates, binary data (BLOB) that is appropriate for storing images, and large character data (CLOB) for storing large character data files such as a resume. Additional data types include LONG, RAW, LONG RAW, and ROWID. This section describes several date and time enhancements for TIMESTAMP. Time data can be stored in fractional_seconds_precision, relative to the local time zone and in interval year-to-month formats. The concept of EXTERNAL TABLES is also introduced. Students are also shown how to perform FLASHBACK table and how to issue FLASHBACK QUERY statements.
Lesson 1: Creating Tables
- List and provide an example of each of the number, character, and date data types.
- Create a table using the appropriate data type for each column.
- Explain the use of EXTERNAL TABLES.
- Use the Data Dictionary to obtain the names and other attributes of database objects.

Lesson 2: Using Data Types
- Create a table using TIMESTAMP and TIMESTAMP WITH TIME ZONE column data types.
- Create a table using INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND column data types.
- Give examples of organizations and personal situations where it is important to know to which time zone a date-time value refers.

Lesson 3: Modifying a Table
- Explain why it is important to be able to modify a table.
- Explain and provide an example for each of the DDL statements ALTER, DROP, RENAME, and TRUNCATE, and the effect each has on tables and columns.
- Construct a query and execute the ALTER TABLE commands ADD, MODIFY, and DROP.
- Explain and perform FLASHBACK QUERY on a table.
- Explain and perform FLASHBACK table operations.
- Explain the rationale for using TRUNCATE versus DELETE for tables.
- Add a comment to a table using the COMMENT ON TABLE command.
- Name the changes that can and cannot be made to modify a column.
- Explain when and why the SET UNUSED statement is advantageous.

Section 9
Constraints enforce rules at the table level to prevent invalid data from entering a table and/or to prevent deletion if there are dependencies with other tables. The five data integrity constraints discussed in this section include: NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. Other than the NULL constraint, all other constraints can be defined at either the column level or the table level. All constraints can be created when table columns are defined or added after creation of a table. Database objects created by a user become part of the user's schema and are stored in the data dictionary. A user can query the data dictionary to view various database objects in their schema.

Lesson 1: Defining NOT NULL and UNIQUE Constraints
- Define the term "constraint" as it relates to data integrity.
- State when it is possible to define a constraint at the column level and when it is possible at the table level.
- State why it is important to give meaningful names to constraints.
- State which data integrity rules are enforced by NOT NULL and UNIQUE constraints.
- Write a CREATE TABLE statement that includes NOT NULL and UNIQUE constraints at the table and column levels.
Lesson 2: PRIMARY KEY, FOREIGN KEY, and CHECK Constraints

- Define and give an example of a PRIMARY KEY, FOREIGN KEY, and CHECK constraint.
- Explain the purpose of defining PRIMARY KEY, FOREIGN KEY, and CHECK constraints.
- Demonstrate the creation of constraints at the column level and table level in a CREATE TABLE statement.
- Evaluate a business problem requiring the addition of a PRIMARY KEY and FOREIGN KEY constraint and write the code to execute the change.
- Query the data dictionary for USER_CONSTRAINTS and interpret the information returned.

Lesson 3: Managing Constraints

- List four different functions that the ALTER statement can perform on constraints.
- Write ALTER TABLE statements to add, drop, disable, and enable constraints.
- Name a business function that would require a DBA to drop, enable and/or disable a constraint, or use the CASCADE syntax.
- Query the data dictionary for USER_CONSTRAINTS and interpret the information returned.

Section 10

Views are used to create virtual tables from existing base tables or from other views. Although a view contains no data of its own, it can be used to restrict data access and query information from multiple tables without the user knowing how to write complicated SQL statements. Views also provide groups of users access to data according to their particular function. Simple views are based on one table, contain no group functions, and allow DML operations. Complex Views often do NOT allow DML operations, specifically if they contain a GROUP BY clause, group functions, or the DISTINCT or ROWNUM keywords.

Lesson 1: Creating Views

- List three uses for views from the standpoint of a database administrator.
- Explain, from a business perspective, why it is important to be able to create and use logical subsets of data derived from one or more tables.
- Create a view with and without column aliases in the subquery using a single base table.
- Create a complex view that contains group functions to display values from two tables.
- Retrieve data from a view.

Lesson 2: DML Operations and Views

- Write and execute a query that performs DML operations on a simple view.
- Name the conditions that restrict your ability to modify a view using DML operations.
- Write and execute a query using the WITH CHECK OPTION clause.
- Explain the use of WITH CHECK OPTION as it applies to integrity constraints and data validation.
- Apply the WITH READ ONLY option to a view to restrict DML operations.
- Use Internet resources to identify future trends, innovations, and directions in the future of computing.

Lesson 3: Managing Views

- Create and execute a SQL statement that removes a view.
- Create and execute a query to create an inline view.
- Create and execute a top-n-analysis query.
Section 11
Along with tables and views, three other objects play an important role in the management of a
database, sequences, indexes, and synonyms. Sequences generate unique values, and are used
to create integers such as those required for primary keys. Indexes provide direct and fast access
to rows in a table. Indexes reduce the amount of disk I/O (input - output) by using an indexed path
to locate data quickly. Synonyms provide an alternative name for a table, view, sequence,
procedure, or other object and are created to shorten lengthy object names and to eliminate the
need to qualify an object name with the schema.

Lesson 1: In-Class Interviews
- Compare and contrast the difference between the questioning methods used in a
 traditional versus a behavioral interview.
- Demonstrate appropriate behavior and dress for an interview.
- Contrast the skills needed to succeed in a traditional interview versus a behavioral
 interview.
- Demonstrate the ability to ask appropriate questions about the position the candidate is
 seeking.
- Evaluate your personal interviewing skills.

Lesson 2: Sequences
- List at least three useful characteristics of a sequence.
- Write and execute a SQL statement that creates a sequence.
- Query the data dictionary using USER SEQUENCES to confirm a sequence definition.
- Apply the rules for using NEXTVAL to generate sequential unique numbers in a table.
- List the advantages and disadvantages of caching sequence values.
- Name three reasons why gaps can occur in a sequence.

Lesson 3: Indexes and Synonyms
- Define an index and its use as a schema object.
- Define ROWID and its use in locating information in a database.
- Name the conditions that cause an index to be created automatically.
- Create and execute a CREATE INDEX and DROP INDEX statement.

Section 12
Controlling user access to ensure database security can be classified into two categories: system
security and data security. System security covers access and use of the database at the system
level, such as creating usernames and passwords, allocating disk space to users, and granting
the system privileges that users can perform. Data security is controlled at the object level and
each type of object has a particular set of privileges that can be granted to it. This section
explains basic system privileges and distinguishes between system and user system privileges. It
also discusses basic object privileges. This section also introduces students to REGULAR
EXPRESSIONS, which is a mechanism widely used in the computing industry for performing
simple and complex pattern matching and replacing of characters in pieces of text.

Lesson 1: Looking for a job
- List and explain important considerations when choosing a new job.
- Identify the components of a posted job description.
- Write a cover letter for a job opportunity.
- Write a follow-up letter for a job opportunity.
- Prepare a professional resume.
Lesson 2: Controlling User Access
- Compare the difference between object privileges and system privileges.
- Construct the two commands required to enable a user to have access to a database.
- Construct and execute a GRANT... ON ...TO statement to assign privileges to objects in their schema to other users and/or PUBLIC.
- Query the data dictionary to confirm privileges granted.

Lesson 3: Creating and Revoking Object Privileges
- Explain what a ROLE is and what its advantages are.
- Construct a statement to create a ROLE and GRANT privileges to it.
- Construct a GRANT .. ON .. TO .. WITH GRANT OPTION statement to assign privileges to objects in their schema to other users and/or PUBLIC.
- Construct and execute a statement to REVOKE object privileges from other users and/or from PUBLIC.
- Explain the purpose of a database link.

Lesson 4: Regular Expressions
- Describe regular expressions.
- Use regular expressions to search, match, and replace strings in SQL statements.

Section 13
The Amazing Books Final Project provides an opportunity for students to apply the concepts they have learned in both the Database Design and Database Programming with SQL courses to create a database application using the Oracle Application Express tool. This tool has many features and functions that can be used to create a sophisticated application. Students are guided through the process of creating a database for a small business by creating tables, layouts, pages, list of values, and forms. Then students input data into the tables and create additional forms and reports.

Lesson 1: Testing
- Develop and apply a strategy for testing that a database functions as designed.

Lesson 2: Final Project
- Apply SQL concepts to create a functional database appropriate for a small business.

Lesson 3: Final Exam Review
- Review the key points about case and character manipulation.
- Review number, date, conversion, and general functions.
- Review conditional expressions.
- Review Cartesian product and join operations.
- Review nonequijoins, outer joins, self joins, cross joins, natural joins, and join clauses.
- Review group functions, GROUP BY and HAVING clauses, ROLLUP, CUBE, and GROUPING SETS.
- Review single-row and multiple-row subqueries.
- Review pair-wise and non-pair-wise subqueries.
- Review correlated subqueries.
- Review DML statements, insert, update, delete, merge and multi-table inserts.
- Review DDL statements, FLASHBACK TABLE, DROP, and FLASHBACK QUERY.
Section 14
The final section provides an opportunity for students to gain an understanding of the various methods for altering database transactions and the reasons a business would want to control transaction processing. This section also identifies the steps necessary to prepare for certification and overviews the iSQL*Plus features covered on the certification exam. The iSQL*Plus Oracle product contains its own command language and can be used to create script files. iSQL*Plus is an Oracle proprietary environment that runs on a browser and is used to submit SQL statements to an Oracle server for execution.

Lesson 1: Database Transactions
- Define the terms COMMIT, ROLLBACK, and SAVEPOINT as they relate to data transactions.
- List three advantages of the COMMIT, ROLLBACK, and SAVEPOINT statements.
- Explain why it is important, from a business perspective, to be able to control the flow of transaction processing.

Lesson 2: Certification Exam Preparation and iSQL*Plus
- To prepare for the OCP Exam, you will need to review the concepts learned in the Database Programming course as well as learn the following:
 1. How to include iSQL*Plus commands to produce more readable SQL output. The iSQL*Plus Oracle product contains its own command language and can be used to create script files. iSQL*Plus is an Oracle proprietary environment that runs on a browser and is used to submit SQL statements to an Oracle server for execution.
 - iSQL*Plus User's Guide and Reference
 - iSQL*Plus PowerPoint Slides
 2. Database Transactions
 3. Controlling User Access